Начать новую тему Ответить на тему
Статистика раздачи
Размер: 31.66 МБ | | Скачали: 10
Сидеров: 0  [0 байт/сек]    Личеров: 0  [0 байт/сек]
Пред. тема | След. тема 

Автор
Сообщение

Ответить с цитатой 

Introduction to Machine Learning with Python

Год издания: 2017
Автор: Andreas C. Müller and Sarah Guido
Жанр или тематика: Data Science

Издательство: O’Reilly Media, Inc
ISBN: 978-1-4493-6940-8
Язык: Английский

Формат: PDF
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 392

Описание: Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.

You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.

With this book, you’ll learn:
Fundamental concepts and applications of machine learning
Advantages and shortcomings of widely used machine learning algorithms
How to represent data processed by machine learning, including which data aspects to focus on
Advanced methods for model evaluation and parameter tuning
The concept of pipelines for chaining models and encapsulating your workflow
Methods for working with text data, including text-specific processing techniques
Suggestions for improving your machine learning and data science skills




Why Machine Learning? 1
Problems Machine Learning Can Solve 2
Knowing Your Task and Knowing Your Data 4
Why Python? 5
scikit-learn 5
Installing scikit-learn 6
Essential Libraries and Tools 7
Jupyter Notebook 7
NumPy 7
SciPy 8
matplotlib 9
pandas 10
mglearn 11
Python 2 Versus Python 3 12
Versions Used in this Book 12
A First Application: Classifying Iris Species 13
Meet the Data 14
Measuring Success: Training and Testing Data 17
First Things First: Look at Your Data 19
Building Your First Model: k-Nearest Neighbors 20
Making Predictions 22
Evaluating the Model 22
Summary and Outlook 23
2. Supervised Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Classification and Regression 25
Generalization, Overfitting, and Underfitting 26
Relation of Model Complexity to Dataset Size 29
Supervised Machine Learning Algorithms 29
Some Sample Datasets 30
k-Nearest Neighbors 35
Linear Models 45
Naive Bayes Classifiers 68
Decision Trees 70
Ensembles of Decision Trees 83
Kernelized Support Vector Machines 92
Neural Networks (Deep Learning) 104
Uncertainty Estimates from Classifiers 119
The Decision Function 120
Predicting Probabilities 122
Uncertainty in Multiclass Classification 124
Summary and Outlook 127
3. Unsupervised Learning and Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Types of Unsupervised Learning 131
Challenges in Unsupervised Learning 132
Preprocessing and Scaling 132
Different Kinds of Preprocessing 133
Applying Data Transformations 134
Scaling Training and Test Data the Same Way 136
The Effect of Preprocessing on Supervised Learning 138
Dimensionality Reduction, Feature Extraction, and Manifold Learning 140
Principal Component Analysis (PCA) 140
Non-Negative Matrix Factorization (NMF) 156
Manifold Learning with t-SNE 163
Clustering 168
k-Means Clustering 168
Agglomerative Clustering 182
DBSCAN 187
Comparing and Evaluating Clustering Algorithms 191
Summary of Clustering Methods 207
Summary and Outlook 208
4. Representing Data and Engineering Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Categorical Variables 212
One-Hot-Encoding (Dummy Variables) 213
Numbers Can Encode Categoricals 218
Binning, Discretization, Linear Models, and Trees 220
Interactions and Polynomials 224
Univariate Nonlinear Transformations 232
Automatic Feature Selection 236
Univariate Statistics 236
Model-Based Feature Selection 238
Iterative Feature Selection 240
Utilizing Expert Knowledge 242
Summary and Outlook 250
5. Model Evaluation and Improvement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Cross-Validation 252
Cross-Validation in scikit-learn 253
Benefits of Cross-Validation 254
Stratified k-Fold Cross-Validation and Other Strategies 254
Grid Search 260
Simple Grid Search 261
The Danger of Overfitting the Parameters and the Validation Set 261
Grid Search with Cross-Validation 263
Evaluation Metrics and Scoring 275
Keep the End Goal in Mind 275
Metrics for Binary Classification 276
Metrics for Multiclass Classification 296
Regression Metrics 299
Using Evaluation Metrics in Model Selection 300
Summary and Outlook 302
6. Algorithm Chains and Pipelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Parameter Selection with Preprocessing 306
Building Pipelines 308
Using Pipelines in Grid Searches 309
The General Pipeline Interface 312
Convenient Pipeline Creation with make_pipeline 313
Accessing Step Attributes 314
Accessing Attributes in a Grid-Searched Pipeline 315
Grid-Searching Preprocessing Steps and Model Parameters 317
Grid-Searching Which Model To Use 319
Summary and Outlook 320
7. Working with Text Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Types of Data Represented as Strings 323
Example Application: Sentiment Analysis of Movie Reviews 325
Representing Text Data as a Bag of Words 327
Applying Bag-of-Words to a Toy Dataset 329
Bag-of-Words for Movie Reviews 330
Stopwords 334
Rescaling the Data with tf–idf 336
Investigating Model Coefficients 338
Bag-of-Words with More Than One Word (n-Grams) 339
Advanced Tokenization, Stemming, and Lemmatization 344
Topic Modeling and Document Clustering 347
Latent Dirichlet Allocation 348
Summary and Outlook 355
8. Wrapping Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Approaching a Machine Learning Problem 357
Humans in the Loop 358
From Prototype to Production 359
Testing Production Systems 359
Building Your Own Estimator 360
Where to Go from Here 361
Theory 361
Other Machine Learning Frameworks and Packages 362
Ranking, Recommender Systems, and Other Kinds of Learning 363
Probabilistic Modeling, Inference, and Probabilistic Programming 363
Neural Networks 364
Scaling to Larger Datasets 364
Honing Your Skills 365
Conclusion 366
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Доп. информация: The animal on the cover of Introduction to Machine Learning with Python is a hellbender salamander (Cryptobranchus alleganiensis), an amphibian native to the eastern United States (ranging from New York to Georgia). It has many colorful nicknames, including "Allegheny alligator," "snot otter," and "mud-devil." The origin of the name "hellbender" is unclear: one theory is that early settlers found the salamander's appearance unsettling and supposed it to be a demonic creature trying to return to hell.

The hellbender salamander is a member of the giant salamander family, and can grow as large as 29 inches long. This is the third-largest aquatic salamander species in the world. Their bodies are rather flat, with thick folds of skin along their sides. While they do have a single gill on each side of the neck, hellbenders largely rely on their skin folds to breathe: gas flows in and out through capillaries near the surface of the skin.

Because of this, their ideal habitat is in clear, fast-moving, shallow streams, which provide plenty of oxygen. The hellbender shelters under rocks and hunts primarily by sense of smell, though it is also able to detect vibrations in the water. Its diet is made up of crayfish, small fish, and occasionally the eggs of its own species. The hellbender is also a key member of its ecosystem as prey: predators include various fish, snakes, and turtles.

Hellbender salamander populations have decreased significantly in the last few decades. Water quality is the largest issue, as their respiratory system makes them very sensitive to polluted or murky water. An increase in agriculture and other human activity near their habitat means greater amounts of sediment and chemicals in the water. In an effort to save this endangered species, biologists have begun to raise the amphibians in captivity and release them when they reach a less vulnerable age.

Many of the animals on O'Reilly covers are endangered; all of them are important to the world.
Правила, инструкции, FAQ!!!
Торрент   Скачать торрент Магнет ссылка
Скачать торрент
[ Размер 20.3 КБ / Просмотров 56 ]

Статус
Проверен 
 
Размер  31.66 МБ
Приватный: Нет (DHT включён)
.torrent скачан  10
Как залить торрент? | Как скачать Torrent? | Ошибка в торренте? Качайте магнет  


     Отправить личное сообщение
   
Страница 1 из 1
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему


Сейчас эту тему просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Перейти:  
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!