Начать новую тему Ответить на тему
Статистика раздачи
Размер: 4.03 МБ | | Скачали: 0
Сидеров: 0  [0 байт/сек]    Личеров: 0  [0 байт/сек]
Пред. тема | След. тема 

Автор
Сообщение

Ответить с цитатой 

Hadoop MapReduce v2 Cookbook - Second Edition

Год издания: 2015
Автор: Thilina Gunarathne

Издательство: Packt Publishing
ISBN: 9781783285471
Язык: Английский

Формат: ePub
Качество: Изначально компьютерное (eBook)
Интерактивное оглавление: Да
Количество страниц: 335

Описание: Starting with installing Hadoop YARN, MapReduce, HDFS, and other Hadoop ecosystem components, with this book, you will soon learn about many exciting topics such as MapReduce patterns, using Hadoop to solve analytics, classifications, online marketing, recommendations, and data indexing and searching. You will learn how to take advantage of Hadoop ecosystem projects including Hive, HBase, Pig, Mahout, Nutch, and Giraph and be introduced to deploying in cloud environments.
Finally, you will be able to apply the knowledge you have gained to your own real-world scenarios to achieve the best-possible results.
1: Getting Started with Hadoop v2
Introduction
Setting up Hadoop v2 on your local machine
Writing a WordCount MapReduce application, bundling it, and running it using the Hadoop local mode
Adding a combiner step to the WordCount MapReduce program
Setting up HDFS
Setting up Hadoop YARN in a distributed cluster environment using Hadoop v2
Setting up Hadoop ecosystem in a distributed cluster environment using a Hadoop distribution
HDFS command-line file operations
Running the WordCount program in a distributed cluster environment
Benchmarking HDFS using DFSIO
Benchmarking Hadoop MapReduce using TeraSort
2: Cloud Deployments – Using Hadoop YARN on Cloud Environments
Introduction
Running Hadoop MapReduce v2 computations using Amazon Elastic MapReduce
Saving money using Amazon EC2 Spot Instances to execute EMR job flows
Executing a Pig script using EMR
Executing a Hive script using EMR
Creating an Amazon EMR job flow using the AWS Command Line Interface
Deploying an Apache HBase cluster on Amazon EC2 using EMR
Using EMR bootstrap actions to configure VMs for the Amazon EMR jobs
Using Apache Whirr to deploy an Apache Hadoop cluster in a cloud environment
3: Hadoop Essentials – Configurations, Unit Tests, and Other APIs
Introduction
Optimizing Hadoop YARN and MapReduce configurations for cluster deployments
Shared user Hadoop clusters – using Fair and Capacity schedulers
Setting classpath precedence to user-provided JARs
Speculative execution of straggling tasks
Unit testing Hadoop MapReduce applications using MRUnit
Integration testing Hadoop MapReduce applications using MiniYarnCluster
Adding a new DataNode
Decommissioning DataNodes
Using multiple disks/volumes and limiting HDFS disk usage
Setting the HDFS block size
Setting the file replication factor
Using the HDFS Java API
4: Developing Complex Hadoop MapReduce Applications
Introduction
Choosing appropriate Hadoop data types
Implementing a custom Hadoop Writable data type
Implementing a custom Hadoop key type
Emitting data of different value types from a Mapper
Choosing a suitable Hadoop InputFormat for your input data format
Adding support for new input data formats – implementing a custom InputFormat
Formatting the results of MapReduce computations – using Hadoop OutputFormats
Writing multiple outputs from a MapReduce computation
Hadoop intermediate data partitioning
Secondary sorting – sorting Reduce input values
Broadcasting and distributing shared resources to tasks in a MapReduce job – Hadoop DistributedCache
Using Hadoop with legacy applications – Hadoop streaming
Adding dependencies between MapReduce jobs
Hadoop counters to report custom metrics
5: Analytics
Introduction
Simple analytics using MapReduce
Performing GROUP BY using MapReduce
Calculating frequency distributions and sorting using MapReduce
Plotting the Hadoop MapReduce results using gnuplot
Calculating histograms using MapReduce
Calculating Scatter plots using MapReduce
Parsing a complex dataset with Hadoop
Joining two datasets using MapReduce
6: Hadoop Ecosystem – Apache Hive
Introduction
Getting started with Apache Hive
Creating databases and tables using Hive CLI
Simple SQL-style data querying using Apache Hive
Creating and populating Hive tables and views using Hive query results
Utilizing different storage formats in Hive - storing table data using ORC files
Using Hive built-in functions
Hive batch mode - using a query file
Performing a join with Hive
Creating partitioned Hive tables
Writing Hive User-defined Functions (UDF)
HCatalog – performing Java MapReduce computations on data mapped to Hive tables
HCatalog – writing data to Hive tables from Java MapReduce computations
7: Hadoop Ecosystem II – Pig, HBase, Mahout, and Sqoop
Introduction
Getting started with Apache Pig
Joining two datasets using Pig
Accessing a Hive table data in Pig using HCatalog
Getting started with Apache HBase
Data random access using Java client APIs
Running MapReduce jobs on HBase
Using Hive to insert data into HBase tables
Getting started with Apache Mahout
Running K-means with Mahout
Importing data to HDFS from a relational database using Apache Sqoop
Exporting data from HDFS to a relational database using Apache Sqoop
8: Searching and Indexing
Introduction
Generating an inverted index using Hadoop MapReduce
Intradomain web crawling using Apache Nutch
Indexing and searching web documents using Apache Solr
Configuring Apache HBase as the backend data store for Apache Nutch
Whole web crawling with Apache Nutch using a Hadoop/HBase cluster
Elasticsearch for indexing and searching
Generating the in-links graph for crawled web pages
9: Classifications, Recommendations, and Finding Relationships
Introduction
Performing content-based recommendations
Classification using the naïve Bayes classifier
Assigning advertisements to keywords using the Adwords balance algorithm
10: Mass Text Data Processing
Introduction
Data preprocessing using Hadoop streaming and Python
De-duplicating data using Hadoop streaming
Loading large datasets to an Apache HBase data store – importtsv and bulkload
Creating TF and TF-IDF vectors for the text data
Clustering text data using Apache Mahout
Topic discovery using Latent Dirichlet Allocation (LDA)
Document classification using Mahout Naive Bayes Classifier
Правила, инструкции, FAQ!!!
Торрент   Скачать торрент Магнет ссылка
Скачать торрент
[ Размер 1.74 КБ / Просмотров 58 ]

Статус
Проверен 
 
Размер  4.03 МБ
Приватный: Нет (DHT включён)
.torrent скачан  0
Как залить торрент? | Как скачать Torrent? | Ошибка в торренте? Качайте магнет  


     Отправить личное сообщение
   
Страница 1 из 1
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему


Сейчас эту тему просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Перейти:  
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!