Начать новую тему Ответить на тему
Статистика раздачи
Размер: 17.34 МБ | | Скачали: 4
Сидеров: 7  [0 байт/сек]    Личеров: 2  [0 байт/сек]
Пред. тема | След. тема 

Автор
Сообщение

Ответить с цитатой 

Mastering Probabilistic Graphical Models Using Python

Год издания: 2015
Автор: Ankur Ankan, Abinash Panda
Жанр или тематика: Программирование

Издательство: Packt Publishing
ISBN: 9781784394684
Язык: Английский

Формат: PDF
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 284

Описание: About This Book

- Gain in-depth knowledge of Probabilistic Graphical Models
- Model time-series problems using Dynamic Bayesian Networks
- A practical guide to help you apply PGMs to real-world problems

Who This Book Is For

If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems.

This book will also help you select the appropriate model as well as the appropriate algorithm for your problem.

What You Will Learn

- Get to know the basics of Probability theory and Graph Theory
- Work with Markov Networks
- Implement Bayesian Networks
- Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm
- Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms
- Sample algorithms in Graphical Models
- Grasp details of Naive Bayes with real-world examples
- Deploy PGMs using various libraries in Python
- Gain working details of Hidden Markov Models with real-world examples

In Detail

Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples.
Table of Contents
1: Bayesian Network Fundamentals
2: Markov Network Fundamentals
3: Inference – Asking Questions to Models
4: Approximate Inference
5: Model Learning – Parameter Estimation in Bayesian Networks
6: Model Learning – Parameter Estimation in Markov Networks
7: Specialized Models
Правила, инструкции, FAQ!!!
Торрент   Скачать торрент Магнет ссылка
Скачать торрент
[ Размер 5.93 КБ / Просмотров 31 ]

Статус
Проверен 
 
Размер  17.34 МБ
Приватный: Нет (DHT включён)
.torrent скачан  4
Как залить торрент? | Как скачать Torrent? | Ошибка в торренте? Качайте магнет  


     Отправить личное сообщение
   
Страница 1 из 1
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему


Сейчас эту тему просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Перейти:  
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!