Начать новую тему Ответить на тему
Статистика раздачи
Размер: 10.22 МБ | | Скачали: 2
Сидеров: 27  [0 байт/сек]    Личеров: 9  [0 байт/сек]
Пред. тема | След. тема 

Автор
Сообщение

Ответить с цитатой 

Learning Data Mining with R

Год: 2015
Автор: Bater Makhabel
Издательство: Packt Publishing
ISBN: 978-1-78398-211-0
Язык: Английский
Формат: PDF
Качество: Изначально компьютерное (eBook)
Количество страниц: 314
Описание:

Being able to deal with the array of problems that you may encounter during complex statistical projects can be difficult. If you have only a basic knowledge of R, this book will provide you with the skills and knowledge to successfully create and customize the most popular data mining algorithms to overcome these difficulties.

You will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs. Discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on RHadoop projects. You will finish this book feeling confident in your ability to know which data mining algorithm to apply in any situation.
Preface
Chapter 1: Warming Up

Big data
Data source
Data mining
Social network mining
Text mining
Web data mining
Why R?
Statistics
Machine learning
Data attributes and description
Data cleaning
Data integration
Data dimension reduction
Data transformation and discretization
Visualization of results
Time for action
Chapter 2: Mining Frequent Patterns, Associations, and Correlations
An overview of associations and patterns
Market basket analysis
Hybrid association rules mining
Mining sequence dataset
The R implementation
High-performance algorithms
Time for action
Chapter 3: Classifiation
Classifiation
Generic decision tree induction
High-value credit card customers classifiation using ID3
Web spam detection using C4.5
Web key resource page judgment using CART
Trojan traffi identifiation method and Bayes classifiation
Identify spam e-mail and Naïve Bayes classifiation
Rule-based classifiation of player types in computer games and rule-based classifiation
Time for action
Chapter 4: Advanced Classifiation
Ensemble (EM) methods
Biological traits and the Bayesian belief network
Protein classifiation and the k-Nearest Neighbors algorithm
Document retrieval and Support Vector Machine
Classifiation using frequent patterns
Classifiation using the backpropagation algorithm
Time for action
Chapter 5: Cluster Analysis
Search engines and the k-means algorithm
Automatic abstraction of document texts and the k-medoids algorithm
The CLARA algorithm
CLARANS
Unsupervised image categorization and affiity propagation clustering
News categorization and hierarchical clustering
Time for action
Chapter 6: Advanced Cluster Analysis
Customer categorization analysis of e-commerce and DBSCAN
Clustering web pages and OPTICS
Visitor analysis in the browser cache and DENCLUE
Recommendation system and STING
Web sentiment analysis and CLIQUE
Opinion mining and WAVE clustering
User search intent and the EM algorithm
Customer purchase data analysis and clustering high-dimensional data
SNS and clustering graph and network data
Time for action
Chapter 7: Outlier Detection
Credit card fraud detection and statistical methods
Activity monitoring – the detection of fraud involving mobile phones and proximity-based methods
Intrusion detection and density-based methods
Intrusion detection and clustering-based methods
Monitoring the performance of the web server and classifiation-based methods
Detecting novelty in text, topic detection, and mining contextual outliers
Collective outliers on spatial data
Outlier detection in high-dimensional data
Time for action
Chapter 8: Mining Stream, Time-series, and Sequence Data
The credit card transaction flw and STREAM algorithm
Predicting future prices and time-series analysis
Stock market data and time-series clustering and classifiation
Web click streams and mining symbolic sequences
Mining sequence patterns in transactional databases
Time for action
Chapter 9: Graph Mining and Network Analysis
Graph mining
Mining frequent subgraph patterns
Social network mining
Time for action
Chapter 10: Mining Text and Web Data
Text mining and TM packages
Text summarization
The question answering system
Genre categorization of web pages
Categorizing newspaper articles and newswires into topics
Web usage mining with web logs
Time for action
Appendix: Algorithms and Data Structures
Index
До перезалития, торрент был скачан - 609 раз.
Торрент перезалит. Причина: добавлен Code.
Правила, инструкции, FAQ!!!
Торрент   Скачать торрент Магнет ссылка
Скачать торрент
[ Размер 25.26 КБ / Просмотров 73 ]

Статус
Проверен 
 
Размер  10.22 МБ
Приватный: Нет (DHT включён)
.torrent скачан  2
Как залить торрент? | Как скачать Torrent? | Ошибка в торренте? Качайте магнет  


     Отправить личное сообщение
   
Страница 1 из 1
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему


Сейчас эту тему просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Перейти:  
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!