Начать новую тему Ответить на тему
Статистика раздачи
Размер: 7.74 МБ | | Скачали: 9
Сидеров: 0  [0 байт/сек]    Личеров: 0  [0 байт/сек]
Пред. тема | След. тема 

Автор
Сообщение

Ответить с цитатой 

High Perfomance Python
Practical Performant Programming for Humans

Год издания: 2014
Автор: Micha Gorelick, Ian Ozsvald

Издательство: O'Reilly Media
ISBN: 978-1-4493-6158-7, 978-1-4493-6159-4
Язык: Английский

Формат: ePub
Качество: Изначально компьютерное (eBook)
Интерактивное оглавление: Да
Количество страниц: 344

Описание: Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python’s implementation. You’ll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs.
How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations.
Chapter 1 Understanding Performant Python
The Fundamental Computer System
Putting the Fundamental Elements Together
So Why Use Python?
Chapter 2 Profiling to Find Bottlenecks
Profiling Efficiently
Introducing the Julia Set
Calculating the Full Julia Set
Simple Approaches to Timing—print and a Decorator
Simple Timing Using the Unix time Command
Using the cProfile Module
Using runsnakerun to Visualize cProfile Output
Using line_profiler for Line-by-Line Measurements
Using memory_profiler to Diagnose Memory Usage
Inspecting Objects on the Heap with heapy
Using dowser for Live Graphing of Instantiated Variables
Using the dis Module to Examine CPython Bytecode
Unit Testing During Optimization to Maintain Correctness
Strategies to Profile Your Code Successfully
Wrap-Up
Chapter 3 Lists and Tuples
A More Efficient Search
Lists Versus Tuples
Wrap-Up
Chapter 4 Dictionaries and Sets
How Do Dictionaries and Sets Work?
Dictionaries and Namespaces
Wrap-Up
Chapter 5 Iterators and Generators
Iterators for Infinite Series
Lazy Generator Evaluation
Wrap-Up
Chapter 6 Matrix and Vector Computation
Introduction to the Problem
Aren’t Python Lists Good Enough?
Memory Fragmentation
Applying numpy to the Diffusion Problem
numexpr: Making In-Place Operations Faster and Easier
A Cautionary Tale: Verify “Optimizations” (scipy)
Wrap-Up
Chapter 7 Compiling to C
What Sort of Speed Gains Are Possible?
JIT Versus AOT Compilers
Why Does Type Information Help the Code Run Faster?
Using a C Compiler
Reviewing the Julia Set Example
Cython
Shed Skin
Cython and numpy
Numba
Pythran
PyPy
When to Use Each Technology
Foreign Function Interfaces
Wrap-Up
Chapter 8 Concurrency
Introduction to Asynchronous Programming
Serial Crawler
gevent
tornado
AsyncIO
Database Example
Wrap-Up
Chapter 9 The multiprocessing Module
An Overview of the Multiprocessing Module
Estimating Pi Using the Monte Carlo Method
Estimating Pi Using Processes and Threads
Finding Prime Numbers
Verifying Primes Using Interprocess Communication
Sharing numpy Data with multiprocessing
Synchronizing File and Variable Access
Wrap-Up
Chapter 10 Clusters and Job Queues
Benefits of Clustering
Drawbacks of Clustering
Common Cluster Designs
How to Start a Clustered Solution
Ways to Avoid Pain When Using Clusters
Three Clustering Solutions
NSQ for Robust Production Clustering
Other Clustering Tools to Look At
Wrap-Up
Chapter 11 Using Less RAM
Objects for Primitives Are Expensive
Understanding the RAM Used in a Collection
Bytes Versus Unicode
Efficiently Storing Lots of Text in RAM
Tips for Using Less RAM
Probabilistic Data Structures
Chapter 12 Lessons from the Field
Adaptive Lab’s Social Media Analytics (SoMA)
Making Deep Learning Fly with RadimRehurek.com
Large-Scale Productionized Machine Learning at Lyst.com
Large-Scale Social Media Analysis at Smesh
PyPy for Successful Web and Data Processing Systems
Task Queues at Lanyrd.com
Правила, инструкции, FAQ!!!
Торрент   Скачать торрент Магнет ссылка
Скачать торрент
[ Размер 2.89 КБ / Просмотров 39 ]

Статус
Проверен 
 
Размер  7.74 МБ
Приватный: Нет (DHT включён)
.torrent скачан  9
Как залить торрент? | Как скачать Torrent? | Ошибка в торренте? Качайте магнет  


     Отправить личное сообщение
   
Страница 1 из 1
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему


Сейчас эту тему просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Перейти:  
Ресурс не предоставляет электронные версии произведений, а занимается лишь коллекционированием и каталогизацией ссылок, присылаемых и публикуемых на форуме нашими читателями. Если вы являетесь правообладателем какого-либо представленного материала и не желаете чтобы ссылка на него находилась в нашем каталоге, свяжитесь с нами и мы незамедлительно удалим её. Файлы для обмена на трекере предоставлены пользователями сайта, и администрация не несёт ответственности за их содержание. Просьба не заливать файлы, защищенные авторскими правами, а также файлы нелегального содержания!